The Muffin Problem

Guangi Cui - Montgomery Blair HS John Dickerson- University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD Erik Metz - University of MD Jacob Prinz-University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)

How it Began

A Recreational Math Conference (Gathering for Gardner) May 2016

I found a pamphlet:
The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles
Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:
How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?

Five Muffins, Three Students, Proc by Picture

Person	Color	What they Get
Alice	RED	$1+\frac{2}{3}=\frac{5}{3}$
Bob	BLUE	$1+\frac{2}{3}=\frac{5}{3}$
Carol	GREEN	$1+\frac{1}{3}+\frac{1}{3}=\frac{5}{3}$

Smallest Piece: $\frac{1}{3}$

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.
Is there a procedure with a larger smallest piece?
Work on it with your neighbor

Five Muffins, Three People-Proc by Picture

YES WE CAN!

Person	Color	What they Get
Alice	RED	$\frac{6}{12}+\frac{7}{12}+\frac{7}{12}$
Bob	BLUE	$\frac{6}{12}+\frac{7}{12}+\frac{7}{12}$
Carol	GREEN	$\frac{5}{12}+\frac{5}{12}+\frac{5}{12}+\frac{5}{12}$

Smallest Piece: $\frac{5}{12}$

Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$.
Is there a procedure with a larger smallest piece?
Work on it with your neighbor

Five Muffins, Three People-Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $\left(\frac{1}{2}, \frac{1}{2}\right)$ and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2}>\frac{5}{12}$.) Reduces to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)
Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3}<\frac{5}{12}$. (Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: Someone gets ≥ 4 pieces. He has some piece

$$
\leq \frac{5}{3} \times \frac{1}{4}=\frac{5}{12} \quad \text { Great to see } \frac{5}{12}
$$

3 Muffins, 5 Students?

Clearly can do with smallest pice $\frac{1}{5}$. Work on it with your neighbor

3 Muffins, 5 students, Smallest piece frac14

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right.$]
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

3 Muffins, 5 students, Smallest piece frac14

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Can we do better?
Work on it with your neighbor

3 Muffins, 5 Students-Can't Do Better Than $\frac{1}{4}$?

VOTE: YES, NO, UNKNOWN

3 Muffins, 5 Students-Can't Do Better Than $\frac{1}{4}$?

VOTE: YES, NO, UNKNOWN NO WE CAN'T!
There is a procedure for 3 muffins, 5 students where each student gets $\frac{3}{5}$ muffins, smallest piece N. We want $N \leq \frac{1}{4}$.

Case 0: Alice gets 1 piece of size $\frac{3}{5}$. Look at the rest of that muffin which totals to $\frac{2}{5}$. (1) That piece is cut. Have piece $\leq \frac{2}{5} \times \frac{1}{2}=\frac{1}{5}$, OR (2) That piece uncut. So someone gets a $\frac{2}{5}$-piece. Must also get a $\frac{1}{5}$ piece.
(Henceforth: All people get ≥ 2 pieces.)
Case 1: Alice gets ≥ 3 pieces. Then $N \leq \frac{3}{5} \times \frac{1}{3}=\frac{1}{5}$. (Henceforth: Everyone gets 2 pieces.)

Case 2: Everyone gets 2 pieces. 10 pieces, 3 muffins: Some muffin gets ≥ 4 pieces. So some piece is $\leq \frac{1}{4}$.

Three-Five and Five-Three

Five Muffins, Three Students:

1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
3. Give 2 students $\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\right)$
4. Give 1 students $\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\right)$

Three-Five and Five-Three

Five Muffins, Three Students:

1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right.$]
3. Give 2 students $\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\right)$
4. Give 1 students $\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\right)$

Three Students, Five Students:

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Work out More for Three Students

Work out with your neighbor
4 muffins 3 studetns
5 muffins 3 students
6 muffins 3 student etc.

