The Muffin Problem

Guangi Cui - Montgomery Blair HS John Dickerson- University of MD Naveen Durvasula - Montgomery Blair HS William Gasarch - University of MD Erik Metz - University of MD Jacob Prinz-University of MD Naveen Raman - Richard Montgomery HS Daniel Smolyak- University of MD Sung Hyun Yoo - Bergen County Academies (in NJ)

How it Began

A Recreational Math Conference (Gathering for Gardner) May 2016

I found a pamphlet:

The Julia Robinson Mathematics Festival: A Sample of Mathematical Puzzles Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?

人口 医牙周下 医医下子 医下下

э

Five Muffins, Three Students, Proc by Picture

Person	Color	What they Get
Alice	RED	$1 + \frac{2}{3} = \frac{5}{3}$
Bob	BLUE	$1 + \frac{2}{3} = \frac{5}{3}$
Carol	GREEN	$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$

Smallest Piece: $\frac{1}{3}$

э

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Five Muffins, Three People-Proc by Picture

YES WE CAN!

Person	Color	What they Get
Alice	RED	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Bob	BLUE	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Carol	GREEN	$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$

Smallest Piece: $\frac{5}{12}$

イロト イポト イヨト イヨト

э

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor

Five Muffins, Three People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece *N*. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (**Henceforth:** All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: **Someone** gets \geq 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12} \qquad \text{Great to see } \frac{5}{12}$$

3 Muffins, 5 Students?

Clearly can do with smallest pice $\frac{1}{5}$. Work on it with your neighbor

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

3 Muffins, 5 students, Smallest piece frac14

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$ 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$ 3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$ 4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

3 Muffins, 5 students, Smallest piece frac14

ション ふぼう メリン メリン しょうくしゃ

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$ 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$ 3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$ 4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$ Can we do better?

Work on it with your neighbor

3 Muffins, 5 Students—Can't Do Better Than $\frac{1}{4}$?

VOTE: YES, NO, UNKNOWN

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 Muffins, 5 Students—Can't Do Better Than $\frac{1}{4}$?

VOTE: YES, NO, UNKNOWN NO WE CAN'T!

There is a procedure for 3 muffins,5 students where each student gets $\frac{3}{5}$ muffins, smallest piece *N*. We want $N \leq \frac{1}{4}$.

Case 0: Alice gets 1 piece of size $\frac{3}{5}$. Look at the rest of that muffin which totals to $\frac{2}{5}$. (1) That piece is cut. Have piece $\leq \frac{2}{5} \times \frac{1}{2} = \frac{1}{5}$, OR (2) That piece uncut. So someone gets a $\frac{2}{5}$ -piece. Must also get a $\frac{1}{5}$ piece. (Henceforth: All people get ≥ 2 pieces.)

Case 1: Alice gets \geq 3 pieces. Then $N \leq \frac{3}{5} \times \frac{1}{3} = \frac{1}{5}$. (**Henceforth:** Everyone gets 2 pieces.)

Case 2: Everyone gets 2 pieces. 10 pieces, 3 muffins: **Some muffin** gets \geq 4 pieces. So some piece is $\leq \frac{1}{4}$.

Three-Five and Five-Three

Five Muffins, Three Students:

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

Three-Five and Five-Three

Five Muffins, Three Students:

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

Three Students, Five Students:

- 1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$

ション ふぼう メリン メリン しょうくしゃ

- 3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
- 4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Work out More for Three Students

Work out with your neighbor 4 muffins 3 studetns 5 muffins 3 students 6 muffins 3 student etc.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで