The Mathematics of Cryptography

Angela Robinson National Institute of Standards and Technology

Cryptography sightings

Cryptography sightings

Certif	icate			>			
General	Details C	Certification P	ath				
<u>S</u> how	<all></all>		\sim				
Field			Value	^			
📑 Sig	nature algo	rithm	sha256RSA				
📑 Sig	nature has	h algorithm	sha256				
Issu	uer		DigiCert Global CA G2, Di				
📑 Val	id from		Tuesday, March 26, 2019				
🔄 Val	id to		Thursday, February 27, 2				
📑 Sub	oject		www.amazon.com, Amaz				
🛅 Pub	olic key		RSA (2048 Bits)				
Pub	olic key para	ameters	05 00	~			

Secure websites are protected using:

- digital signatures authenticity, integrity
- certificates verify identity
- encryption privacy

Encryption

Encryption

Encryption

Question: How can you communicate so that:

- Your bestie will understand your messages
- Eavesdroppers <u>cannot</u> understand your messages

Julius Caesar ruled a large empire

Communicated with his military leaders by messenger

Encrypted his messages by shifting each letter 3 times to the right

Encrypted his messages by shifting each letter 3 times to the right

Send "V H F U H W" to military leaders

If anyone attacks the messenger, they won't know what the secret message is

Shift Cipher

 Arrange letters in a circular fashion

 Assign numbers
 0-25

Caesar used shift 3

Let shift be generalized to *k*

Shift Cipher

Caesar used shift 3

Let shift be generalized to k

k can be any number from 1 to 25.

What happens if we choose shift k = 26?

 Arrange letters in a circular fashion

 Assign numbers
 0-25

Shift Cipher

Plaintext	Α	В	C	•••	Υ	Z
Plaintext	0	1	2		24	25
Encrypt	$0 + k \mod 26$	$1 + k \mod 26$	$2 + k \mod 26$		24 + <i>k</i> mod 26	$25 + k \mod 26$

- Encryption:
 - Mathematically equivalent to addition by k modulo 26
- Decryption:
 - *Subtraction* by *k* modulo 26

Plaintext	W	Α	R	Ν	I	Ν	G
Plaintext	22	0	17	13	8	13	6

- Encryption:
 - Mathematically equivalent to addition by 12 modulo 26
- Decryption:
 - *Subtraction* by 12 modulo 26

Plaintext	W	Α	R	Ν	I	Ν	G
Plaintext	22	0	17	13	8	13	6
+12	34	12	29	25	20	25	18

- Encryption:
 - Mathematically equivalent to addition by 12 modulo 26
- Decryption:
 - *Subtraction* by 12 modulo 26

Plaintext	W	Α	R	Ν	I	Ν	G
Plaintext	22	0	17	13	8	13	6
+12	3 4	12	29	25	20	25	18
mod 26	8	12	3	25	20	25	18

- Encryption:
 - Mathematically equivalent to addition by 12 modulo 26
- Decryption:
 - *Subtraction* by 12 modulo 26

Plaintext	W	Α	R	Ν	I	Ν	G
Plaintext	22	0	17	13	8	13	6
+12	34	12	29	25	20	25	18
mod 26	8	12	3	25	20	25	18
Ciphertext	Ι	М	D	Z	U	Z	S

WARNING ------- IMDZUZS

Some letters are more commonly used in the English alphabet than others:

E, A, T, O ...

Suppose you receive a Shift Cipher ciphertext:

wkh sdvvzrug lv vhyhq grqw whoo dqbrqh

wkh sdvvzrug lv vhyhq grqw whoo dqbrqh

Construct a letter frequency chart:

h = 5 v = 4 w = 3 q = 3 r = 3 g = 3 d = 2 b = 1 k = 1 l = 1 s = 1 y = 1

wkh sdvvzrug lv vhyhq grqw whoo dqbrqh

Construct a letter frequency chart:

h = 5 v = 4 q = 3 r = 3 g = 3 d = 2 b = 1 k = 1 l = 1 s = 1 y = 1

wkh sdvvzrug lv vhyhq grqw whoo dqbrqh

Construct a letter frequency chart:

wkh sdvvzrug lv THE

vhyhq grqw whoo

dqbrqh

wkh sdvvzrug lv THE PASSWORD IS

vhyhq grqw whoo

dqbrqh

- Instead of *plain addition* modulo 26:
 - Multiplication first
 - Then addition modulo 26

Plaintext	Μ	E	S	S	Α	G	Е
	12	4	18	18	0	6	4

- Instead of plain addition modulo 26:
 - Multiplication first
 - Then addition modulo 26
- Try (3,10)
 - Multiply by 3
 - Add 10 modulo 26

Plaintext	Μ	Е	S	S	Α	G	Ε
	12	4	18	18	0	6	4

- Instead of plain addition modulo 26:
 - Multiplication first
 - Then addition modulo 26
- Try (3,10)
 - Multiply by 3
 - Add 10 modulo 26

Plaintext	Μ	Ε	S	S	Α	G	Е
	12	4	18	18	0	6	4
х 3	36	12	54	54	0	18	12

- Instead of plain addition modulo 26:
 - Multiplication first
 - Then addition modulo 26
- Try (3,10)
 - Multiply by 3
 - Add 10 modulo 26

Plaintext	Μ	Ε	S	S	Α	G	Е
	12	4	18	18	0	6	4
х 3	36	12	54	54	0	18	12
+ 10	46	22	64	64	10	28	22
mod 26	20	22	12	12	10	2	22

- Instead of plain addition modulo 26:
 - Multiplication first
 - Then addition modulo 26
- Try (3,10)
 - Multiply by 3
 - Add 10 modulo 26

Plaintext	Μ	Ε	S	S	Α	G	Ε
	12	4	18	18	0	6	4
х 3	36	12	54	54	0	18	12
+ 10	46	22	64	64	10	28	22
mod 26	20	22	12	12	10	2	22
	U	W	Μ	Μ	K	С	W

• Ciphertext $C = a \cdot M + b \mod 26$ Need a way to "reverse" these mathematical steps:

Multiplication first
 Then addition modulo 26

• Ciphertext $C = a M + b \mod 26$

Want to isolate "M"

Need a way to "reverse" these mathematical steps:

Multiplication first
 Then addition modulo 26

• Ciphertext $C = a \cdot M + b \mod 26$

Want to isolate "M"

1. Subtract *b*

2. Divide by *a*

Multiply by the **multiplicative inverse** of *a mod* 26

Need a way to "reverse" these mathematical steps:

Multiplication first
 Then addition modulo 26

Definition

- A multiplicative inverse of an integer *a* mod 26 is an integer *x* so that:
- $ax \equiv 1 mod 26.$

Definition

Example:

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
- $ax \equiv 1 \mod 26$.

Let a=3.
3 * 1 = 3 mod 26 3 * 2 = 6 mod 26 3 * 3 = 9 mod 26 : 3 * 9 = 27 ≡ 1 mod 26

Definition

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
- $ax \equiv 1 \mod 26$.

Example:

• Let a=3. $3 * 1 = 3 \mod 26$ $3 * 2 = 6 \mod 26$ $3 * 3 = 9 \mod 26$ \vdots $3 * 9 = 27 \equiv 1 \mod 26$

Definition

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
- $ax \equiv 1 mod 26.$

Example:

Let a=3. $3 * 1 = 3 \mod 26$ $3 * 2 = 6 \mod 26$ $3 * 3 = 9 \mod 26$

 $3 \stackrel{...}{9} = 27 \equiv 1 \mod 26$

The direct way to compute a modular multiplicative inverse is using the Extended Euclidean Algorithm!

Not every integer has a inverse modulo 26!

Affine cipher keys must have a multiplicative inverse for successful decryption!

Euclid's Division Theorem: For any integers n, d there are unique integers q, r such that $n = d \cdot q + r$ and $0 \le r < d$.

Euclid's Division Theorem: For any integers n, d there are unique integers q, r such that $n = d \cdot q + r$ and $0 \le r < d$.

Suppose we want to find the greatest common divisor of integers *a*, *b*. Division Theorem states:

There are unique integers q, r such that $a = b \cdot q + r$.

If d divides a, and d divides b, then d must divide r Euclid's Division Theorem: For any integers n, d there are unique integers q, r such that $n = d \cdot q + r$ and $0 \le r < d$.

Suppose we want to find the greatest common divisor of integers *a*, *b*. Division Theorem states:

There are unique integers q, r such that $a = b \cdot q + r$.

If *d* divides *a*, and *d* divides *b*, then *d* must divide r Euclid's Division Theorem: For any integers n, d there are unique integers q, r such that $n = d \cdot q + r$ and $0 \le r < d$.

Suppose we want to find the greatest common divisor of integers *a*, *b*. Division Theorem states:

there are unique integers q, r such that $a = b \cdot q + r$.

If d divides a, and d divides b, then d must divide r Compute gcd(119,42): 119=42*2+35 42=35*1+7 35=7*5+0

The last nonzero remainder is the gcd! Then 119 and 42 are not relatively prime.

If d divides a, and d divides b, then d must divide r

If gcd(a, b) = 1, then a has a multiplicative inverse mod b.

Compute gcd(119,42): 119=42*2 + 35 42=35*1+7 35=7*5+0

The last nonzero remainder is the gcd! Then 119 and 42 are not relatively prime.

Affine Cipher - cryptanalysis

How many keys?

Keys (a,b)
a must be relatively prime to 26
b an integer in {0,1,2,...,25}

Letter frequency analysis?

- This attack still applies
- Still not secure

Affine Cipher - cryptanalysis

How many	keys?
----------	-------

Keys (a, b)
a must be relatively prime to 26
b an integer in {0,1,2,...,25}

Letter frequency analysis?

- This attack still applies
- Still not secure

1	14
2	15
3	16
4	17
5	18
6	19
7	20
8	21
9	22
10	23
11	24
12	25
4.5	

±⊰

Affine Cipher - cryptanalysis

	12 choices for a		
How many keys?	$12 \times 26 - 212$ choices	1 2	14 15
	for (a,b)	3	16
• Keys (a, b)		4	17
 <i>a</i> must be relatively prime to 26 <i>b</i> an integer in {0,1,2,,25} 			18
			19
		7	20
Letter frequency ana	lysis?	8	21
• This attack still applies	9	22	
	10	23	
 Still not secure 		11	24
		12	25
		13	

Preventing letter frequency attacks

The problem with Shift Ciphers and Affine Cipher is that plaintext letters consistently map to the same ciphertext letters:

Must encrypt so that, for example, plaintext A's map to different letters in ciphertext.

One time pad

Suppose secret key k is a long string of random letters:

F D O J C E T M Q Z P I I Y ... 5 3 14 9 2 4 19 12 16 25 15 8 8 24

Alice encrypts her message: MESSAGE by adding the first 7 letters of the secret key as follows

	Μ	E	S	S	Α	G	Ε
	12	4	18	18	0	6	4
+ KEY	5	3	14	9	2	4	19
mod 26							

One time pad

Suppose secret key k is a long string of random letters:

F D O J C E T M Q Z P I I Y ... 5 3 14 9 2 4 19 12 16 25 15 8 8 24

Alice encrypts her message: MESSAGE by adding the first 7 letters of the secret key as follows

One time pad

One-time pad secret key is a long string of random letters:

F D O J C E T M O Z P I I Y ... 5 3 14 9 2 4 19 12 16 25 15 8 8 24

Affine cipher secret key is a pair of integers (a, b)Shift cipher secret key is one integer k

Security vs efficency

One-time pad

secret key is a long string of random letters, length n26ⁿ possible keys

Affine cipher secret key is a pair of integers (*a*, *b*) 312 possible keys

Shift cipher secret key is one integer k 25 possible keys

Goals of cryptography

Key Exchange

Notice that in the Shift Cipher and Affine cipher, the same key is used to encrypt and decrypt.

Then Alice and Bob must share a key **before** they can communicate privately.

Goals of cryptography

Key Exchange

Question: How can Alice and Bob communicate so that

- they both learn a shared secret key
- the eavesdropper <u>does not</u> learn the key?

Goals of cryptography

Question: How can Alice and Bob communicate so that

- Bob can understand Alice's messages
- eavesdroppers <u>cannot</u> understand Alice's messages
- Alice and Bob DON'T need to share the same secret key ?

Thank you!

angela.robinson@nist.gov