The Mathematics of Cryptography

Angela Robinson

National Institute of Standards and Technology

Cryptography sightings

Cryptography sightings

Secure websites are protected using:

- digital signatures.- authenticity, integrity
- certificates - verify identity
- encryption - privacy

Encryption

Encryption

Encryption

Question: How can you communicate so that:

- Your bestie will understand your messages
- Eavesdroppers cannot understand your messages

Julius Caesar's choice

Julius Caesar ruled a large empire

Communicated with his military leaders by messenger

Julius Caesar's choice

Julius Caesar's choice

Julius Caesar's choice

Shift Cipher

Caesar used shift 3

Let shift be generalized to k

- Arrange letters in a circular fashion
- Assign numbers 0-25

Shift Cipher

Caesar used shift 3

Let shift be generalized to k
k can be any number from 1 to 25.

What happens if we choose shift $k=26 ?$

- Arrange letters in a circular fashion
- Assign numbers 0-25

Shift Cipher

Plaintext	A	B	C	\ldots	Y	Z
Plaintext	0	1	2	\ldots	24	25
Encrypt	$0+k \bmod 26$	$1+k \bmod 26$	$2+k \bmod 26$		$24+k \bmod 26$	$25+k \bmod 26$

- Encryption:
- Mathematically equivalent to addition by k modulo 26
- Decryption:
- Subtraction by k modulo 26

Shift Cipher - Example
 $\mathrm{k}=12$

Plaintext	W	A	R	N	I	N	G
Plaintext	22	0	17	13	8	13	6

- Encryption:
- Mathematically equivalent to addition by 12 modulo 26
- Decryption:
- Subtraction by 12 modulo 26

Shift Cipher - Example
 $\mathrm{k}=12$

Plaintext	W	A	R	N	I	N	G
Plaintext	22	0	17	13	8	13	6
+12	34	12	29	25	20	25	18

- Encryption:
- Mathematically equivalent to addition by 12 modulo 26
- Decryption:
- Subtraction by 12 modulo 26

Shift Cipher - Example
 $\mathrm{k}=12$

Plaintext	W	A	R	N	I	N	G
Plaintext	22	0	17	13	8	13	6
+12	34	12	29	25	20	25	18
mod 26	8	12	3	25	20	25	18

- Encryption:
- Mathematically equivalent to addition by 12 modulo 26
- Decryption:
- Subtraction by 12 modulo 26

Shift Cipher - Example $\mathrm{k}=12$

Plaintext	W	A	R	N	I	N	G
Plaintext	22	0	17	13	8	13	6
+12	34	12	29	25	20	25	18
mod 26	8	12	3	25	20	25	18
Ciphertext	I	M	D	Z	U	Z	S

WARNING \longrightarrow IMDZUZS

Cryptanalysis of Shift Cipher

Some letters are more commonly used in the English alphabet than others:

E, A, T, O ...

Cryptanalysis of Shift Cipher

Suppose you receive a Shift Cipher ciphertext:
wkh sdvvzrug 7v vhyhq graw whoo dqbrqh

Cryptanalysis of Shift Cipher

wkh sdvvzrug 1 v vhyhq

Cryptanalysis of Shift Cipher

wkh sdvvzrug $7 v$ vhyhq grqw whoo dqbrah

Construct a letter frequency chart:
$\mathrm{h}=5$
$\mathrm{v}=4$
$\mathrm{q}=3$
$r=3$
$\mathrm{g}=3$
$\mathrm{d}=2$
b=1
$\mathrm{k}=1$
I=1
$\mathrm{s}=1$
$y=1$

Cryptanalysis of Shift Cipher

Cryptanalysis of Shift Cipher

wkh sdvvzrug 1v
THE
vhyhq grqw whoo
dqbrqh

Cryptanalysis of Shift Cipher

wkh sdvvzrug Tv THE PASSWORD IS
vhyhq graw whoo
dqbrqh

Cryptanalys. Only 26 distinct

Affine Cipher - encryption

- Instead of plain addition modulo 26:
- Multiplication first
- Then addition modulo 26

| Plaintext | M | E | S | S | A | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Affine Cipher - encryption

- Instead of plain addition modulo 26:
- Multiplication first
- Then addition modulo 26

Plaintext	M	E	S	S	A	G	E
12	4	18	18	0	6	4	

Affine Cipher - encryption

- Instead of plain addition modulo 26:
- Multiplication first
- Then addition modulo 26

Plaintext	M	E	S	S	A	G	E
	12	4	18	18	0	6	4
$\times 3$	36	12	54	54	0	18	12

- Try $(3,10)$
- Multiply by 3
- Add 10 modulo 26

Affine Cipher - encryption

- Instead of plain addition modulo 26:
- Multiplication first
- Then addition modulo 26
- Try $(3,10)$
- Multiply by 3
- Add 10 modulo 26

Plaintext	M	E	S	S	A	G	E
$\times 3$	12	4	18	18	0	6	4
+10	36	12	54	54	0	18	12
$\bmod 26$	46	22	64	64	10	28	22
	20	22	12	12	10	2	22

Affine Cipher - encryption

- Instead of plain addition modulo 26:
- Multiplication first
- Then addition modulo 26
- Try $(3,10)$
- Multiply by 3
- Add 10 modulo 26

Plaintext	M	E	S	S	A	G	E
$\times 3$	12	4	18	18	0	6	4
+10	36	12	54	54	0	18	12
$\bmod 26$	20	22	64	64	10	28	22
	U	W	M	M	K	C	W

Affine Cipher - decryption

- Ciphertext
$C=a \cdot M+b \bmod 26$

Need a way to "reverse" these mathematical steps:

1. Multiplication first
2. Then addition modulo 26

Affine Cipher - decryption

- Ciphertext
$C=a \cdot M+b \bmod 26$

Want to isolate " M "

Need a way to "reverse" these mathematical steps:

1. Multiplication first
2. Then addition modulo 26

Affine Cipher - decryption

- Ciphertext
$C=a \cdot M+b \bmod 26$

Want to isolate " M "

1. Subtract b
2. Divide by a

Multiply by the multiplicative inverse of a mod 26

Need a way to "reverse" these mathematical steps:

1. Multiplication first
2. Then addition modulo 26

Modular multiplicative inverse

Definition

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
$a x \equiv 1 \bmod 26$.

Modular multiplicative inverse

Definition

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
$a x \equiv 1 \bmod 26$.

Example:

- Let $\mathrm{a}=3$.

$$
\begin{aligned}
& 3 * 1=3 \bmod 26 \\
& 3 * 2=6 \bmod 26 \\
& 3 * 3=9 \bmod 26
\end{aligned}
$$

$$
3 * 9=27 \equiv 1 \bmod 26
$$

Modular multiplicative inverse

Definition

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
$a x \equiv 1 \bmod 26$.

Example:

- Let $\mathrm{a}=3$.
$3 * 1=3 \bmod 26$
$3 * 2=6 \bmod 26$
$3 * 3=9 \bmod 26$
$3 @ 27^{\vdots} \equiv 1 \bmod 26$

Modular multiplicative inverse

Definition

- A multiplicative inverse of an integer a mod 26 is an integer x so that:
$a x \equiv 1 \bmod 26$.

Example:

- Let $a=3$.

$$
3 * 1=3 \bmod 26
$$

$3 * 2=6 \bmod 26$
$3 * 3=9 \bmod 26$
$3 \bigcirc 27 \equiv 1 \bmod 26$

The direct way to compute a modular multiplicative inverse is using the Extended

Euclidean Algorithm!

Euclidean Algorithm

Not every integer has a inverse modulo 26!

Affine cipher keys must have a multiplicative inverse for successful decryption!

Euclid's Division Theorem:

For any integers n, d there are unique integers
q, r such that
$n=d \cdot q+r$ and $0 \leq r<d$.

Euclidean Algorithm

Euclid's Division Theorem:

For any integers n, d there are unique integers
q, r such that
$n=d \cdot q+r$ and $0 \leq r<d$.

Suppose we want to find the greatest common divisor of integers a, b. Division Theorem states:

There are unique integers q, r such that

$$
a=b \cdot q+r .
$$

Euclidean Algorithm

Euclid's Division Theorem:

For any integers n, d there are unique integers
q, r such that
$n=d \cdot q+r$ and $0 \leq r<d$.

Suppose we want to find the greatest common divisor of integers a, b. Division Theorem states:

There are unique integers q, r such that

$$
a=b \cdot q+r
$$

Euclidean Algorithm

Euclid's Division Theorem:

For any integers n, d there are unique integers
q, r such that
$n=d \cdot q+r$ and $0 \leq r<d$.

Suppose we want to find the greatest common divisor of integers a, b. Division Theorem states:
there are unique integers q, r such that

$$
a=b \cdot q+r .
$$

Euclidean Algorithm

Compute gcd(119,42):

$$
\begin{aligned}
& 119=42 * 2+35 \\
& 42=35^{*} 1+7 \\
& 35=7 * 5+0
\end{aligned}
$$

The last nonzero remainder is the gcd! Then 119 and 42 are not relatively prime.

If d divides a, and d divides b, then d must divide r

Euclidean Algorithm

Compute $\operatorname{gcd}(119,42)$:

$$
\begin{aligned}
& 119=42 * 2+35 \\
& 42=35 * 1+7 \\
& 35=7 * 5+0
\end{aligned}
$$

The last nonzero remainder is the gcd! Then 119 and 42 are not relatively prime.

If $\operatorname{gcd}(a, b)=1$, then a has a multiplicative inverse mod b.

Affine Cipher - cryptanalysis

How many keys?

- Keys (a, b)
- a must be relatively prime to 26
- b an integer in $\{0,1,2, \ldots, 25\}$

Letter frequency analysis?

- This attack still applies
- Still not secure

Affine Cipher - cryptanalysis

How many keys?

- Keys (a, b)
- a must be relatively prime to 26
- b an integer in $\{0,1,2, \ldots, 25\}$

Letter frequency analysis?

- This attack still applies
- Still not secure

1	14
z	15
3	16
4	17
5	18
6	19
7	20
8	21
9	22
10	23
11	$z 4$
12	25
13	

Affine Cipher - cryptanalysis

How many keys?

- Keys (a, b)
- a must be relatively prime to 26
- b an integer in $\{0,1,2, \ldots, 25\}$

Letter frequency analysis?

- This attack still applies

12 choices for a 26 choices for b

1	14
z	15
3	16
4	17
5	18
6	19
7	20
8	21
9	22
10	23
11	24
12	25
13	

Preventing letter frequency attacks

The problem with Shift Ciphers and Affine Cipher is that plaintext letters consistently map to the same ciphertext letters:
WARNING \longrightarrow IMDZUZS
MESSAGE \longleftrightarrow UWMMKCW

Must encrypt so that, for example, plaintext A's map to different letters in ciphertext.

One time pad

Suppose secret key k is a long string of random letters:

$$
\begin{array}{llllllllllll}
\text { F D O J C E T M Q } \\
5 & 3 & 14 & 9 & 2 & 4 & 19 & 12 & 16 & 25 & 15 & 8 \\
\hline
\end{array}
$$

Alice encrypts her message: MESSAGE by adding the first 7 letters of the secret key as follows

	M	E	S	S	A	G	E
+ KEY	12	4	18	18	0	6	4
$\bmod 26$		3	14	9	2	4	19

One time pad

Suppose secret key k is a long string of random letters:

$$
\begin{array}{llllllllllll}
\text { F D O J C E T M Q } \\
5 & 3 & 14 & 9 & 2 & 4 & 19 & 12 & 16 & 25 & 15 & 8 \\
\hline
\end{array}
$$

Alice encrypts her message: MESSAGE by adding the first 7 letters of the secret key as follows

	M	E	S	S	A	G	E
+ KEY	12	4	18	18	0	6	4
$\bmod 26$	17	3	14	9	2	4	19
	7	32	27	2	10	23	
	R	H	G	B	C	K	X

One time pad

One-time pad secret key is a long string of random letters:

$$
\begin{array}{llllllllllll}
\text { F D O J C E T M O } \\
5 & 3 & 14 & 9 & 2 & 4 & 19 & 12 & 16 & 25 & 15 & 8 \\
\hline
\end{array}
$$

Affine cipher secret key is a pair of integers (a, b)
Shift cipher secret key is one integer k

Security vs efficency

One-time pad

secret key is a long string of random letters, length n 26^{n} possible keys

Affine cipher
secret key is a pair of integers (a, b)
312 possible keys

Shift cipher

secret key is one integer k
25 possible keys

Goals of cryptography

Key Exchange

Notice that in the Shift Cipher and Affine cipher, the same key is used to encrypt and decrypt.

Then Alice and Bob must share a key before they can communicate privately.

Goals of cryptography

Key Exchange

Question: How can Alice and Bob communicate so that

- they both learn a shared secret key
- the eavesdropper does not learn the key?

Goals of cryptography

Public key encryption

Question: How can Alice and Bob communicate so that

- Bob can understand Alice's messages
- eavesdroppers cannot understand Alice's messages
- Alice and Bob DON'T need to share the same secret key?

Thank you!

angela.robinson@nist.gov

