Surface Classification

Jenny Rustad
University of Maryland

June 2019

Euler Characteristic $=\mathrm{V}-\mathrm{E}+\mathrm{F}$

How many vertices?

How many edges?

How many faces?

Cube

Euler Characteristic $=\mathrm{V}-\mathrm{E}+\mathrm{F}$

How many vertices?

How many edges?

How many faces?

Cube

Euler Characteristic $=\mathrm{V}-\mathrm{E}+\mathrm{F}$

How many vertices?

How many edges?

How many faces?

Cube

Euler Characteristic $=\mathrm{V}-\mathrm{E}+\mathrm{F}$

Pentagonal Prism

Octahedron

Euler Characteristic $=\mathrm{V}-\mathrm{E}+\mathrm{F}$

Topology of Surfaces

Not a big deal:

- translating
- rotating

■ stretching

- shrinking

Big deal:

- cutting
- gluing
- wiggling

If we can transform one surface into another, using only the kinds of transformations on the left, then these two surfaces are topologically equivalent or homeomorphic.

Topology of Surfaces

Topology of Surfaces

Theorem (Classification of Surfaces)

Let S be a closed, orientable surface. Then S is topologically equivalent to one and only one of the genus g surfaces shown below ($g=0,1,2, \ldots$):

What is that??

This is an example of a translation surface.

But what is it topologically?

What is that??

This is an example of a translation surface.

It's a genus- 2 surface!

Further reading (ie, internet search terms)

- Mobius band
- Klein bottle
- Diana Davis math (Prof. Davis is an expert on polygonal billiards who has created many expository materials on the subject for a variety of audiences)

