Number Systems and Scientific Computing

Elizabeth Paul

Institute for Research in Electronics and Applied Physics Department of Physics University of Maryland, College Park

Outline

- What is a number system?
- Examples of number systems
 - Decimal
 - Binary
 - Hexadecimal
 - Mayan numerals
- How are number systems used in scientific computing?

Many ways to represent the same number

Many ways to represent the same number

- A *number system* is a standard for representing numbers in written form or for computation
- Examples
 - Decimal form (345.01)
 - Roman numerals (MDCCXXXII)
 - Binary form (011001)

- A *number system* is a standard for representing numbers in written form or for computation
- Examples
 - Decimal form (345.01)
 - Roman numerals (MDCCXXXII)
 - Binary form (011001)

Why are number systems important?

- The number system dictates how many symbols it takes to communicate a number
- Some systems are more useful for communicating among humans, while others are more useful for communicating with computers

Outline

- What is a number system?
- Examples of number systems
 - Decimal
 - Binary
 - Hexadecimal
 - Mayan numerals
- How are number systems used in scientific computing?

How does the decimal system work?

- Number system based on 10 digits (base 10)
- Most common way to represent a number for arithmetic

10 possible digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

How does the decimal system work?

- Number system based on 10 digits (base 10)
- Most common way to represent a number for arithmetic

10 possible digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Decimal is a positional system

- The weight of each digit given by its position with respect to decimal point
- The "0" becomes valuable in the decimal system!

Let's dissect a decimal number

Let's dissect a decimal number

5	8	3	9	•	0	0	3	4
10 ³	10 ²	101	100		10-1	10-2	10-3	10-4

$5839.0034 = 5 \times 10^{3} + 8 \times 10^{2} + 3 \times 10^{1} + 9 \times 10^{0} + 0 \times 10^{-1} + 0 \times 10^{-2} + 3 \times 10^{-3} + 4 \times 10^{-4}$

Elizabeth Paul

Number Systems and Scientific Computing

Let's dissect a decimal number

5	8	3	9	•	0	0	3	4
10 ³	10 ²	101	100		10-1	10-2	10-3	10-4

$5839.0034 = 5 \times 10^{3} + 8 \times 10^{2} + 3 \times 10^{1} + 9 \times 10^{0} + 0 \times 10^{-1} + 0 \times 10^{-2} + 3 \times 10^{-3} + 4 \times 10^{-4}$

Position with respect to decimal indicates powers of **10**

Binary number systems

- The binary system is similar to the decimal system
 - Positional system based on powers of 2
- Two possible digits (0 and 1), or *bits*

Binary number systems

- The binary system is similar to the decimal system
 - Positional system based on powers of 2
- Two possible digits (0 and 1), or *bits*

Why is binary important?

- Easy to represent electronically
- Only 2 states needed to store a given digit (e.g. on and off)
- Used in almost all modern computers
- Basis for Boolean data
 - 0 = False, 1 = True

How do computers use binary?

- Transistor switches are the building blocks of computers
- Can be fundamentally in two states: on and off
- Each stores one byte (digit of binary) of information

Other modern applications of binary

• Used to transmit telephone signals, internet connections, and cable television

Other modern applications of binary

Frequency and amplitude modulation

- Wi-fi transmission
- Digital TV

Computer Bit

- Units of measurement for digital memory and transmission
- How many binary digits needed to store a piece of data (i.e. music file, photo)

Byte (B)	$8 = 2^3$ bits
Kilobyte (KB)	$1024 = 2^{10}$ bytes
Megabyte (MB)	1024 kilobytes
Gigabyte (GB)	1024 megabytes
Terabyte (TB)	1024 gigabytes
Petabyte (PB)	1024 terabytes

Computer Bit

- Units of measurement for digital memory and transmission
- How many binary digits needed to store a piece of data (i.e. music file, photo)

Byte (B)	$8 = 2^3$ bits
Kilobyte (KB)	$1024 = 2^{10}$ bytes
Megabyte (MB)	1024 kilobytes
Gigabyte (GB)	1024 megabytes
Terabyte (TB)	1024 gigabytes
Petabyte (PB)	1024 terabytes

Petabyte (PB)

1024 terabytes

How many binary digits can a 16 GB flash drive store? $16 \times 1024^3 \times 8 = 137,438,953,472$

to store hoto)

Byte (B)	$8 = 2^3$ bits
Kilobyte (KB)	$1024 = 2^{10}$ bytes
Megabyte (MB)	1024 kilobytes
Gigabyte (GB)	1024 megabytes
Terabyte (TB)	1024 gigabytes
Petabyte (PB)	1024 terabytes

Let's dissect a binary number

Let's dissect a binary number

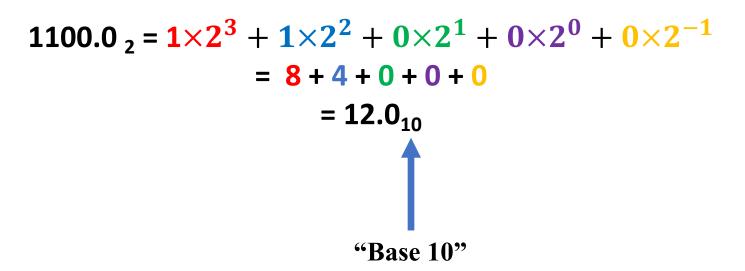
1	0	1	0	•	1	1	0	1
23	22	21	20		2-1	2-2	2-3	2-4

$$1010.1101_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 8 + 0 + 2 + 0 + \frac{1}{2} + \frac{1}{4} + 0 + \frac{1}{16} = 10.8125_{10}$$

Position with respect to decimal indicates powers of 2

Now it's your turn

Convert the following to decimal form


Elizabeth Paul

Now it's your turn

Convert the following to decimal form

1100.02

Going the other direction

Convert the following decimal to binary form

75₁₀

Going the other direction

Convert the following decimal to binary form

75₁₀

Successively divide by 2, keeping track of the remainder

$$75/2 = 37 + 1/2$$

$$37/2 = 18 + 1/2$$

$$18/2 = 9 + 0/2$$

$$9/2 = 4 + 1/2$$

$$4/2 = 2 + 0/2$$

$$2/2 = 1 + 0/2$$

$$1/2 = 0 + 1/2$$

Going the other direction

Convert the following decimal to binary form

 75_{10}

Successively divide by 2, keeping track of the remainder

$$75/2 = 37 + 1/2$$

$$37/2 = 18 + 1/2$$

$$18/2 = 9 + 0/2$$

$$9/2 = 4 + 1/2$$

$$4/2 = 2 + 0/2$$

$$2/2 = 1 + 0/2$$

$$1/2 = 0 + 1/2$$

Use each remainder, beginning at bottom

 $75_{10} = 1001011_{2}$

Hexadecimal system

- The binary system requires many digits to represent a small number (i.e. $12_{10} = 1100_2$)
- To make it easier to handle by humans, a hexadecimal (base 16) system is sometimes used

16 possible digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Hexadecimal system

- The binary system requires many digits to represent a small number (i.e. $12_{10} = 1100_2$)
- To make it easier to handle by humans, a hexadecimal (base 16) system is sometimes used

16 possible digits:

Applications of hexadecimal

- Used to define colors in HTML/CSS languages
 - #RRGGBB
- Defining numbers in assembly language (i.e. locations in memory)

black	gray	silver	white
#000000	#808080	#c0c0c0	#mm
navy	blue	teal	aqua
#000080	#00000ff	#008080	#00mm
green	lime	olive	yellow
#008000	#00ff00	#808000	#ffff00
maroon	red	purple	fuchsia
#800000	#ff0000	#800080	#ff00ff

Hexadecimal form can easily be converted to binary

016	0	0	0	0
1 ₁₆	0	0	0	1
2 ₁₆	0	0	1	0
3 ₁₆	0	0	1	1
4 ₁₆	0	1	0	0
5 ₁₆	0	1	0	1
6 ₁₆	0	1	1	0
7 ₁₆	0	1	1	1
8 ₁₆	1	0	0	0
9 ₁₆	1	0	0	1
A ₁₆	1	0	1	0
B ₁₆	1	0	1	1
C ₁₆	1	1	0	0
D ₁₆	1	1	0	1
E ₁₆	1	1	1	0
F ₁₆	1	1	1	1

Elizabeth Paul

Number Systems and Scientific Computing

Hexadecimal form can easily be converted to binary

016	0	0	0	0
1 ₁₆	0	0	0	1
2 ₁₆	0	0	1	0
3 ₁₆	0	0	1	1
4 ₁₆	0	1	0	0
5 ₁₆	0	1	0	1
616	0	1	1	0
7 ₁₆	0	1	1	1
816	1	0	0	0
9 ₁₆	1	0	0	1
A ₁₆	1	0	1	0
B ₁₆	1	0	1	1
C ₁₆	1	1	0	0
D ₁₆	1	1	0	1
E ₁₆	1	1	1	0
F ₁₆	1	1	1	1

Once conversion of base digits known, larger numbers can be built up

 $A93_{16} = 101010010011_2$

Elizabeth Paul

Hexadecimal form can easily be converted to binary

Once conversion of base digits known, larger numbers can be built up

 $A93_{16} = 101010010011_{2}$

Hexadecimal is a "short form" for binary

Elizabeth Paul

Number systems throughout history – Mayan system

- Base-20 system
- Positional system for positive integers
- 3 base symbols

All other symbols (0-19) built up from base

Building up Mayan numbers

• Vertical position indicates value

Building up Mayan numbers

• Vertical position indicates value

• Let's try a few more

Building up Mayan numbers

• Vertical position indicates value

• Let's try a few more

Outline

- What is a number system?
- Examples of number systems
 - Decimal
 - Binary
 - Hexadecimal
 - Mayan numerals
- How are number systems used in scientific computing?

What is scientific computing?

- *Scientific computing* is the use of computers for solving mathematical and scientific problems
- Efficient algorithms for development of numerical tools
- Used across many scientific disciplines
 - Evolution of universe
 - Molecular dynamics
 - Plasma magnetic confinement

Number systems in scientific computing

- We need to be able to deal with negative numbers and with very small/large values
 - i.e -3.45×10^{-15} , 4.89×10^{13}
- Floating point numbers, commonly used in programming languages, uses a 32 bit binary system

Number systems in scientific computing

- We need to be able to deal with negative numbers and with very small/large values
 - i.e -3.45×10^{-15} , 4.89×10^{13}
- Floating point numbers, commonly used in programming languages, uses a 32 bit binary system

Floating point representation: **0100000111011100100000000000**

Bit number	Size	Name
31	1 bit	Sign (S)
23-30	8 bits	Exponent (E)
0-22	23 bits	Mantissa (M)

Decimal representation: $(-1)^{S}(2)^{E-127}(1 + M) = 27.56640625$

Conclusions

- Number systems allow us to communicate numbers with each other and with the digital world
- Several examples
 - Decimal useful for human understanding
 - Binary useful for digital communication
 - Hexadecimal easily converts to binary, human readable
- Important for solving equations on computers for understanding the physical world

Conclusions

- Number systems allow us to communicate numbers with each other and with the digital world
- Several examples
 - Decimal useful for human understanding
 - Binary useful for digital communication
 - Hexadecimal easily converts to binary, human readable
- Important for solving equations on computers for understanding the physical world

Thank you for your attention!