## Number Systems and Scientific Computing

Elizabeth Paul

Institute for Research in Electronics and
Applied Physics
Department of Physics
University of Maryland, College Park


## Outline

- What is a number system?
- Examples of number systems
- Decimal
- Binary
- Hexadecimal
- Mayan numerals
- How are number systems used in scientific computing?

Many ways to represent the same number

## Decimal form

$$
45
$$

Hexadecimal form $2 \mathrm{D}_{16}$

Binary form $101101_{2}$

## Octal form

$$
55_{8}
$$

Roman numerals XLV

## Mayan numerals

## Many ways to represent the same number



## What is a number system?

- A number system is a standard for representing numbers in written form or for computation
- Examples
- Decimal form (345.01)
- Roman numerals (MDCCXXXII)
- Binary form (011001)


## What is a number system?

- A number system is a standard for representing numbers in written form or for computation
- Examples
- Decimal form (345.01)
- Roman numerals (MDCCXXXII)
- Binary form (011001)

Why are number systems important?

- The number system dictates how many symbols it takes to communicate a number
- Some systems are more useful for communicating among humans, while others are more useful for communicating with computers


## Outline

- What is a number system?
- Examples of number systems
- Decimal
- Binary
- Hexadecimal
- Mayan numerals
- How are number systems used in scientific computing?


## How does the decimal system work?

- Number system based on 10 digits (base 10)
- Most common way to represent a number for arithmetic


10 possible digits: $0,1,2,3,4,5,6,7,8,9$

## How does the decimal system work?

- Number system based on 10 digits (base 10)
- Most common way to represent a number for arithmetic


10 possible digits:

$$
0,1,2,3,4,5,6,7,8,9
$$

Decimal is a positional system

- The weight of each digit given by its position with respect to decimal point
- The " 0 " becomes valuable in the decimal system!


## Let's dissect a decimal number



## Decimal point

## Let's dissect a decimal number

| 5 | 8 | 3 | 9 | . | 0 | 0 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{3}$ | $10^{2}$ | $10^{1}$ | $10^{0}$ |  | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ | $10^{-4}$ |

$5839.0034=5 \times 10^{3}+8 \times 10^{2}+3 \times 10^{1}+9 \times 10^{0}+0 \times 10^{-1}+$ $\mathbf{0} \times \mathbf{1 0}^{-\mathbf{2}}+3 \times 10^{-3}+4 \times 10^{-4}$

## Let's dissect a decimal number

| 5 | 8 | 3 | 9 | . | 0 | 0 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{3}$ | $10^{2}$ | $10^{1}$ | $10^{0}$ |  | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ | $10^{-4}$ |

$5839.0034=5 \times 10^{3}+8 \times 10^{2}+3 \times 10^{1}+9 \times 10^{0}+0 \times 10^{-1}+$ $\mathbf{0} \times \mathbf{1 0}^{-\mathbf{2}}+3 \times 10^{-3}+4 \times 10^{-4}$

Position with respect to decimal indicates powers of 10

- The binary system is similar to the decimal system
- Positional system based on powers of 2
- Two possible digits (0 and 1 ), or bits


## Binary number systems

- The binary system is similar to the decimal system
- Positional system based on powers of 2
- Two possible digits (0 and 1 ), or bits

Why is binary important?

- Easy to represent electronically
- Only 2 states needed to store a given digit (e.g. on and off)
- Used in almost all modern computers
- Basis for Boolean data
- $0=$ False, 1 = True



## How do computers use binary?

- Transistor switches are the building blocks of computers
- Can be fundamentally in two states: on and off
- Each stores one byte (digit of binary) of information



## Other modern applications of binary

## Fiber optics



## Other modern applications of binary

## Fiber optics



## Computer Bit



## Computer Byte

 OOO- Units of measurement for digital memory and transmission
- How many binary digits needed to store a piece of data (i.e. music file, photo)

| Byte $(\mathrm{B})$ | $8=2^{3}$ bits |
| :--- | :--- |
| Kilobyte $(\mathrm{KB})$ | $1024=2^{10}$ bytes |
| Megabyte $(\mathrm{MB})$ | 1024 kilobytes |
| Gigabyte $(\mathrm{GB})$ | 1024 megabytes |
| Terabyte $(\mathrm{TB})$ | 1024 gigabytes |
| Petabyte $(\mathrm{PB})$ | 1024 terabytes |

## Computer Bit



## Computer Byte

 OOO- Units of measurement for digital memory and transmission
- How many binary digits needed to store a piece of data (i.e. music file, photo)

| Byte $(\mathrm{B})$ | $8=2^{3}$ bits |
| :--- | :--- |
| Kilobyte $(\mathrm{KB})$ | $1024=2^{10}$ bytes |
| Megabyte $(\mathrm{MB})$ | 1024 kilobytes |
| Gigabyte $(\mathrm{GB})$ | 1024 megabytes |
| Terabyte $(\mathrm{TB})$ | 1024 gigabytes |
| Petabyte $(\mathrm{PB})$ | 1024 terabytes |





## Decimal point

| 1 | 0 | 1 | 0 | . | 1 | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |  | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ | $2^{-4}$ |

$$
\begin{aligned}
\mathbf{1 0 1 0 . 1 1 0 1}_{2}= & 1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+ \\
& 1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
= & 8+0+2+0+1 / 2+1 / 4+0+1 / 16 \\
= & 10.8125_{10}
\end{aligned}
$$

Position with respect to decimal indicates powers of 2

## Convert the following to decimal form

$1100.0_{2}$

"Base 2"

## Convert the following to decimal form

$1100.0_{2}$

| 1 | 1 | 0 | 0 | . | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |  | $2^{-1}$ |

$$
\begin{gathered}
1100.0_{2}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}+0 \times 2^{-1} \\
=8+4+0+0+0 \\
=12.0_{10} \\
\text { "Base 10" }
\end{gathered}
$$

## Going the other direction

## Convert the following decimal to binary form

$$
75_{10}
$$

## Going the other direction

Convert the following decimal to binary form

$$
75_{10}
$$

Successively divide by $\mathbf{2}$, keeping track of the remainder

$$
\begin{aligned}
& 75 / 2=37+1 / 2 \\
& 37 / 2=18+1 / 2 \\
& 18 / 2=9+0 / 2 \\
& 9 / 2=4+1 / 2 \\
& 4 / 2=2+0 / 2 \\
& 2 / 2=1+0 / 2 \\
& 1 / 2=0+1 / 2
\end{aligned}
$$

## Going the other direction

Convert the following decimal to binary form

$$
75_{10}
$$

Successively divide by $\mathbf{2}$, keeping track of the remainder

$$
\begin{aligned}
& 75 / 2=37+1 / 2 \\
& 37 / 2=18+1 / 2 \\
& 18 / 2=9+0 / 2 \\
& 9 / 2=4+1 / 2 \\
& 4 / 2=2+0 / 2 \\
& 2 / 2=1+0 / 2 \\
& 1 / 2=0+1 / 2
\end{aligned}
$$

Use each remainder, beginning at bottom

$$
75_{10}=1001011_{2}
$$

## Hexadecimal system

- The binary system requires many digits to represent a small number (i.e. $12_{10}=1100_{2}$ )
- To make it easier to handle by humans, a hexadecimal (base 16) system is sometimes used

16 possible digits:
$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

## Hexadecimal system

- The binary system requires many digits to represent a small number (i.e. $12_{10}=1100_{2}$ )
- To make it easier to handle by humans, a hexadecimal (base 16) system is sometimes used

16 possible digits:

$$
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
$$

Applications of hexadecimal

- Used to define colors in HTML/CSS languages - \#RRGGBB
- Defining numbers in assembly language (i.e. locations in memory)

| blnck | $\begin{aligned} & \text { gray } \\ & \text { f808080 } \end{aligned}$ | $\begin{gathered} \text { silver } \\ \text { Fo00000 } \end{gathered}$ | white ffIIIII |
| :---: | :---: | :---: | :---: |
| navy | blue mooner | teal | $\begin{aligned} & \text { aqua } \\ & \text { a00m } \end{aligned}$ |
| $\begin{aligned} & \text { green } \\ & \text { rove0 } \end{aligned}$ | lime \#00f100 | ollive \#808000 | yellow <br> \#filloo |
| maroon <br> F800000 | red trimolo | purple <br> 5800080 | fuchsia 4ffonf |

Hexadecimal form can easily be converted to binary

| $0_{16}$ |
| :--- |
| $1_{16}$ |
| $2_{16}$ |
| $3_{16}$ |
| $4_{16}$ |
| $5_{16}$ |
| $6_{16}$ |
| $7_{16}$ |
| $8_{16}$ |
| $9_{16}$ |
| $\mathrm{~A}_{16}$ |
| $\mathrm{~B}_{16}$ |
| $\mathrm{C}_{16}$ |
| $\mathrm{D}_{16}$ |
| $\mathrm{E}_{16}$ |
| $\mathrm{~F}_{16}$ |$\quad$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

Hexadecimal form can easily be converted to binary

| $0_{16}$ |
| :--- |
| $1_{16}$ |
| $2_{16}$ |
| $3_{16}$ |
| $4_{16}$ |
| $5_{16}$ |
| $6_{16}$ |
| $7_{16}$ |
| $8_{16}$ |
| $9_{16}$ |
| $\mathrm{~A}_{16}$ |
| $\mathrm{~B}_{16}$ |
| $\mathrm{C}_{16}$ |
| $\mathrm{D}_{16}$ |
| $\mathrm{E}_{16}$ |
| $\mathrm{~F}_{16}$ |$\quad$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

## $A 93_{16}=101010010011_{2}$

Hexadecimal form can easily be converted to binary

| $0_{16}$ |
| :--- |
| $1_{16}$ |
| $2_{16}$ |
| $3_{16}$ |
| $4_{16}$ |
| $5_{16}$ |
| $6_{16}$ |
| $7_{16}$ |
| $8_{16}$ |
| $9_{16}$ |
| $\mathrm{~A}_{16}$ |
| $\mathrm{~B}_{16}$ |
| $\mathrm{C}_{16}$ |
| $\mathrm{D}_{16}$ |
| $\mathrm{E}_{16}$ |
| $\mathrm{~F}_{16}$ |$\quad$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

## $A 93_{16}=101010010011_{2}$

Hexadecimal is a "short form" for binary

## Number systems throughout history - Mayan system

- Base-20 system
- Positional system for positive integers
- 3 base symbols


All other symbols (0-19) built up from base


- Vertical position indicates value

- Vertical position indicates value

- Let's try a few more

- Vertical position indicates value

- Let's try a few more



## Outline

- What is a number system?
- Examples of number systems
- Decimal
- Binary
- Hexadecimal
- Mayan numerals
- How are number systems used in scientific computing?


## What is scientific computing?

- Scientific computing is the use of computers for solving mathematical and scientific problems
- Efficient algorithms for development of numerical tools
- Used across many scientific disciplines
- Evolution of universe
- Molecular dynamics
- Plasma magnetic confinement

- We need to be able to deal with negative numbers and with very small/large values
- i.e $-3.45 \times 10^{-15}, 4.89 \times 10^{13}$
- Floating point numbers, commonly used in programming languages, uses a 32 bit binary system


## Number systems in scientific computing

- We need to be able to deal with negative numbers and with very small/large values
- i.e $-3.45 \times 10^{-15}, 4.89 \times 10^{13}$
- Floating point numbers, commonly used in programming languages, uses a 32 bit binary system

Floating point representation: 01000001110111001000100000000000

| Bit number | Size | Name |
| :--- | :--- | :--- |
| $\mathbf{3 1}$ | $\mathbf{1}$ bit | Sign (S) |
| $23-30$ | 8 bits | Exponent (E) |
| $0-22$ | 23 bits | Mantissa (M) |

Decimal representation: $(-1)^{\mathrm{S}}(2)^{\mathrm{E}-127}(1+\mathrm{M})=27.56640625$

## Conclusions

- Number systems allow us to communicate numbers with each other and with the digital world
- Several examples
- Decimal - useful for human understanding
- Binary - useful for digital communication
- Hexadecimal - easily converts to binary, human readable
- Important for solving equations on computers for understanding the physical world


## Conclusions

- Number systems allow us to communicate numbers with each other and with the digital world
- Several examples
- Decimal - useful for human understanding
- Binary - useful for digital communication
- Hexadecimal - easily converts to binary, human readable
- Important for solving equations on computers for understanding the physical world


## Thank you for your attention!

